Recommendation Systems: A Probabilistic Analysis

نویسندگان

  • Ravi Kumar
  • Prabhakar Raghavan
  • Sridhar Rajagopalan
  • Andrew Tomkins
چکیده

A recommendation system tracks past actions of a group of users to make recommendations to individual members of the group. The growth of computer-mediated marketing and commerce has led to increased interest in such systems. We introduce a simple analytical framework for recommendation systems, including a basis for defining the utility of such a system. We perform probabilistic analyses of algorithmic methods within this framework. These analyses yield insights into how much utility can be derived from the memory of past actions and on how this memory can be ex-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Preference Networks: Probabilistic Models for Recommendation Systems

Recommender systems are important to help users select relevant and personalised information over massive amounts of data available. We propose an unified framework called Preference Network (PN) that jointly models various types of domain knowledge for the task of recommendation. The PN is a probabilistic model that systematically combines both content-based filtering and collaborative filteri...

متن کامل

Content Profiling from Text Reviews

Most of current recommendation systems use numerical ratings to suggest a content (e.g. movie, restaurant) to a user. Instead, we apply probabilistic topic models to text reviews. We profile contents in a latent space where we compute distances that can be used for cold start recommendation.

متن کامل

Special Issue on Recommendation and Search in Social Systems

The open nature of collaborative recommender systems allows attackers who inject biased profile data to have a significant impact on the recommendations produced. Standard memory-based collaborative filtering algorithms, such as k-nearest neighbor, are quite vulnerable to profile injection attacks. Previous work has shown that some model-based techniques are more robust than standard k-nn. Mode...

متن کامل

Model-Based Collaborative Filtering as a Defense against Profile Injection Attacks

The open nature of collaborative recommender systems allows attackers who inject biased profile data to have a significant impact on the recommendations produced. Standard memory-based collaborative filtering algorithms, such as knearest neighbor, have been shown to be quite vulnerable to such attacks. In this paper, we examine the robustness of model-based recommendation algorithms in the face...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998